Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 6(1): 24-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27047739

RESUMO

Ribonucleases are considered as promising tools for anticancer treatment due to their selective cytotoxicity against tumor cells. We investigated a new RNase from Bacillus altitudinis termed BALNASE (B. altitudinis RNase). Balnase is a close homolog of the well-known cytotoxic binase, differing by only one amino acid residue: nonpolar hydrophobic alanine at position 106 in the balnase molecule is replaced by a polar uncharged threonine in binase. The most exciting question is how the physico-chemical properties and biological effects of RNase might be changed by A106T substitution. Here, we have developed a chromatography-based rapid and modern technique for the purification of this new RNase which allowed us to get a protein sample of high quality with specific activity of 1.2 × 10(6) units in preparative amounts, suitable for further investigation of its biological properties.

2.
Toxicon ; 69: 219-26, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23567038

RESUMO

Ribonuclease (RNase) treatment represents a novel mechanism based approach to anticancer therapy as an alternative to the DNA damaging drugs commonly used in clinical practice. Apart from their ribonucleolytic activity, cytotoxic effects have attracted a considerable attention to RNases because of their potential as selective agents for treatment of certain malignancies. Among these enzymes, Binase, an RNase from Bacillus intermedius, has shown promising results. Here, we have found that binase selectively attacked human A549 alveolar adenocarcinoma cells to trigger an apoptotic response, whereas normal lung epithelial cells LEK were not affected by the ribonuclease. The tumor transformation led to the modification of certain cellular characteristics causing cell sensitivity to binase. Although a general mode for RNases cytotoxicity includes their penetration into the cell, translocation to the cytosol and degradation of ribonucleic acid, many aspects of this process have not been fully elucidated. Our data revealed the following time-dependent changes induced by binase in A549 cells: (a) fast permanent internalization of the enzyme during the first hours of treatment; (b) temporary increase in cellular permeability for macromolecules during the 4-6 h of treatment; (c) apoptotic alterations in population after 24 h and (d) DNA fragmentation and cell death after 72 h of treatment with binase. Elucidation of these molecular strategies used by this promising toxin provides us essential information for the development of new anticancer drugs.


Assuntos
Adenocarcinoma Bronquioloalveolar/patologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Endorribonucleases/farmacologia , Adenocarcinoma Bronquioloalveolar/tratamento farmacológico , Bacillus/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Eletroforese em Gel de Campo Pulsado , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...